

Discussed topics:

MTHS24 - Exercise sheet 10

Morning: Laura Tolos / Andrew Jackura Afternoon: Andrew Jackura

Thurday, 25 July 2024

Lecture material

References:

- Original Lüscher paper (stable particles): inspire
 Lüscher (1985)
- Original Lüscher paper (scattering): inspire -Lüscher (1986)
- Non-rest frames: inspire Rummukainen & Gottlieb (1995)
- Field theory approach: inspire Kim, Sharpe, & Sachrajda (2005)
- Coupled-channels: inspire Hansen & Sharpe (2012)
- Arbitrary number of channels and spin: inspire
 Briceno (2014)

Exercices

10.1 Two Particles in a Box

In this problem, we explore the discrete spectrum of two particles in a finite cubic volume and its relation to their infinite volume scattering amplitude.

- (a) Enumerate the different momenta (in units of $2\pi/L$) allowed for $\mathbf{n}^2 \in \{0,1,2,3,4,5,6,8,9\}$.
- (b) Take the limit of E/m as $mL \to \infty$.

• Two-particles quantization condition

Interacting energy levels from resonances

• Finite-folume spectrum

- (c) Plot the non-interacting spectrum in terms of E^*/m in the rest frame $\mathbf{n}_P = [000]$ as a function of mL.
- (d) Repeat (c) for the frames $\mathbf{n}_P = [001], [011], [111], [002].$

10.2 Finite-Volume Function

This problem focuses on the finite-volume function $F(E, \mathbf{P}, L)$, which characterizes finite-volume distortions in an interacting system.

- (a) Derive $F(E, \mathbf{P}, L)$ using the all-orders approach discussed in the lectures. Simplify the result for numerical computation.
- (b) Determine the dimensions of F.
- (c) For a system at total momentum ${\bf P}={\bf 0}$, plot F as a function of E^{\star}/m , $(Lq^{\star}/2\pi)$ for fixed mL=4,5, and 6.

(d) Repeat (c) for moving frame systems, $\mathbf{n}_P = [001], [011], [111], [002].$

10.3 Connecting the Finite-Volume Function to the Spectrum

In this problem we explore how to determine the spectrum of two non-interacting particles by solving $F^{-1}=0$.

- (a) Find the spectrum of two non-interacting particles in their rest frame by solving $F^{-1}=0$ for fixed mL=4,5, and 6.
- (b) Repeat for moving frame systems, $n_P = [001], [011], [111], [002].$

10.4 Lüscher Quantization Condition

Here, we study the poles of the correlation matrix for interacting particles using the Lüscher quantization condition.

- (a) Show that the imaginary parts of \mathcal{M}^{-1} and F cancel.
- (b) Using the Breit-Wigner and Effective Range parameterizations, investigate the spectrum of an interacting two-particle system.