

MTHS24 - Exercise sheet 3

Morning: Eric Swanson / Sergi Gonzalez-Solis Afternoon: Daniel Winney, Vanamali Shastry

Wednesday, 17 July 2024

Lecture material

Discussed topics:

- Partial waves
- Analyticity
- Unitarity

References:

- A.D. Martin, T.D. Spearman, Elementary Particle Theory, inSpire
- Review on Novel approaches in hadron spectroscopy by JPAC, inspire

Exercices

3.1 Amplitude analysis

Given the Omnès function:

$$\Omega(s) = \exp\left[\frac{s}{\pi} \int_{4m_{\pi}^2}^{\infty} dz \frac{\delta(z)}{z(z-s)}\right], \tag{1}$$

(a) Consider the low-energy expansion of the pion form factor $F_{\pi}(s) \equiv \Omega(s)$:

$$F_{\pi}(s) = 1 + \frac{1}{6} \langle r_{\pi}^2 \rangle s + \mathcal{O}(s^2),$$
 (2)

and deduce the sum rule:

$$\langle r_{\pi}^2 \rangle = \frac{6}{\pi} \int_{4m_{\pi}^2}^{\infty} dz \frac{\delta(z)}{z^2} \,. \tag{3}$$

The quantity $\sqrt{\langle r_\pi^2 \rangle}$ is called charge radius of the pion, see PDF for summary of the experimental measurements.

- (b) Assume that the phase shift $\delta(s)$ reaches $k\pi$ (k is an integer) at $s=\Lambda^2$ and stays at that value for larger s. What is the behavior of $\Omega(s)$ in the limit $|s|\to\infty$?
- (c) What is the resulting function $\Omega(s)$ for an infinitely narrow resonance, i.e. consider $\delta(s)=\pi\theta(s-M^2)$?

3.2 Isospin

The one-pion states are of the form $|I,I_3\rangle$ with

$$|1,+1\rangle = |\pi^{+}\rangle, \quad |1,0\rangle = |\pi^{0}\rangle, \quad |1,-1\rangle = |\pi^{-}\rangle.$$
 (4)

- (a) From the three pion flavors, construct the nine different two-pion states and their decomposition into isospin states.
- (b) Invert the decomposition in (a) to get the decomposition of the isospin states into two pion states.

