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Exercices

6.1 Escape room in the complex plane

(a) Characterize the complex structure of functions
√
x and log(−x) by finding the branch points, branch

cuts and number of complex (Riemann) sheets in the complex plane.

(b) Repeat (a) for a function f(x) =
√
x−

√
x− 1.

(c) Construct a complex function with two branch points at +i and -i connected by a branch cut.

(d) Locate zeros of the function g(z) =
√
z + i+ 1.

(e) Find residue of the function 1/g(z) by computing a circular integral about the complex pole.
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6.2 Argand diagrams from lattice

The ππ scattering with unphysical pion mass (mπ = 391MeV) for S (left) and D (right) partial waves is
studied using lattice calculations. Scattering amplitudes are presented on the Argand diagrams (parametric
plot of energy in Real/Imaginary coordinates) as a function of energy of the system. The value are given
units of Ecm · t where t ·mπ = 0.06906.

Using information on the diagrams, answer the following questions:

(a) Estimate masses of K and η particles.

(b) Find the elastic energy region for the S and D waves.

Solution: Elastic region is defined as the range of energy values for which ππ → ππ process
dominates. For the S-wave, the elastic region lies for the Ecmt range of [0.139,0.189] (after
this point, the amplitude hits the KK̄ threshold. Also, after this point, the curve starts going
inside the unitarity circle). For the D-wave, this region exists until value of 0.229.

(c) Locate the energy value for which the S-wave peak.

Solution: The S-wave peaks at the point Ecmt = 0.154, which is at energy Ecm = 0.872 GeV.

(d) Estimate the mass and decay width for the D wave resonance.

Solution: The D-wave resonance is observed at Ecmt = 0.284, this is the point where there
is a kink in the argand diagram. Note : I can locate where the resonance is. I am confused
about how to proceed from there, because I can get center of mass energy from the point, and
maybe equate it to the pole value. But I would expect a complex output but I cannot read it
out properly from the Argand diagram.

(e) Sketch the amplitude phase versus energy of the system for both partial waves.

6.3 Cartesian tensors

Cartesian tensors are tensors in three-dimensional Euclidean space. The available tensors are:

• Rank 0: 1

• Rank 1: ki

• Rank 2: kikj , deltaij , ϵijlkl
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• Rank 3: ϵijl

• Rank 4: combinations of all the above

(a) Show that ϵijlkjkl is not a rank 1 tensor.

Solution: The Levi-Civita tensor ϵijl is antisymmetric under the exchange of any two indices,
i.e. ϵijl = −ϵilj . Then

ϵijlkjkl = −ϵiljklkj

and since the product of two components of the same vector is commutative thus kjkl = klkj
we have:

ϵijlkjkl = −ϵiljkjkl

This implies:
ϵijlkjkl = 0

Therefore, ϵijlkjkl is identically zero and does not form a valid rank 1 tensor (does not behave
as rank 1 tensor).

(b) Show that ∇ × (∇ × A) = ∇(∇ · A) − ∇2A, using the following property: (A × B)i = ϵijlAjBi

Hint:

ϵijlϵij′l′ = δjj′δll′ − δjl′δj′l (1)

Solution: Starting with the vector identity:

(A×B)i = ϵijlAjBl

Let C = ∇×A, then:
Ci = (∇×A)i = ϵijl∂jAl

Now, consider the curl of C, and use the property of the Levi-Civita symbol:

(∇×C)i = ϵimn∂mCn = ϵimn∂m(ϵnjl∂jAl)

= ϵimnϵnjl∂m∂jAl

= (δijδml − δilδmj)∂m∂jAl

= ∂i∂lAl − ∂j∂jAi

= ∇× (∇×A) = ∇(∇ ·A)−∇2A

(c) Given
∫
d3k f(k) ki = 0 for a scalar function f(k). Show that:∫

d3k f(k) kikj =
1

3
δij

∫
d3k f(k) k2 . (2)
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Solution: By symmetry, the integral
∫
d3k f(k) kikj must be proportional to δij because the

left-hand side is a rank 2 tensor and the only isotropic rank 2 tensor is proportional to δij , then:∫
d3k f(k) kikj = Aδij

To find A, take the trace: ∫
d3k f(k) kiki = Aδii

Since δii = 3, we have: ∫
d3k f(k) k2 = 3A

So,

A =
1

3

∫
d3k f(k) k2

Thus, ∫
d3k f(k) kikj =

1

3
δij

∫
d3k f(k) k2

(d) Show that∫
d3k f(k, p̂) kikj =

1

2

∫
d3k f

[
k2 − (k · p̂)2

]
δij +

1

2

∫
d3k f

[
3(k · p̂)2 − k2

]
p̂ip̂j . (3)
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Solution: The given integral can be split into parts proportional to δij and p̂ip̂j :∫
d3k f(k, p̂) kikj = Aδij +Bp̂ip̂j

To find A and B, we take the trace and the contraction with p̂ip̂j :
(a) Trace:

δij
∫

d3k f(k, p̂) kikj = Aδii +B(p̂ip̂i)

→
∫

d3k f(k, p̂) k2 = 3A+B

(b) Contraction with p̂ip̂j :

p̂ip̂j
∫

d3k f(k, p̂) kikj = A(p̂ · p̂) +B(p̂ip̂j p̂ip̂j)

→
∫

d3k f(k, p̂) (k · p̂)2 = A+B

(c) Solving for A and B:

3A+B =

∫
d3k f(k, p̂) k2

A+B =

∫
d3k f(k, p̂) (k · p̂)2

(d) Subtract the second equation from the first:

2A =

∫
d3k f(k, p̂) (k2 − (k · p̂)2)

Thus A =
1

2

∫
d3k f(k, p̂) (k2 − (k · p̂)2)

(e) Using A in the second equation:

B =

∫
d3k f(k, p̂) (k · p̂)2 −A

B =

∫
d3k f(k, p̂) (k · p̂)2 − 1

2

∫
d3k f(k, p̂) (k2 − (k · p̂)2)

So B =
1

2

∫
d3k f(k, p̂) (3(k · p̂)2 − k2)

Therefore,∫
d3k f(k, p̂) kikj =

1

2

∫
d3k f

[
k2 − (k · p̂)2

]
δij +

1

2

∫
d3k f

[
3(k · p̂)2 − k2

]
p̂ip̂j

6.4 Photons in Cartesian Basis

Consider photons (or gluons) in Cartesian basis so a+ki =
∑

λ a
+
kλ
ϵi(kλ) .

(a) Show that the “scalar photon ball” is just a scalar state γγ that can be written as:

|γγ; 0+⟩ ∝
∫

d3k ϕ(k) a+kia
+
−ki

|0⟩ , (4)

where ϕ(k) is the momentum wave function.
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Solution: Apply the parity operator P :∫
d3k ϕ(k)Pa+kiP

+Pa+kiP
+|0⟩ =

∫
d3k ϕ(k) (−a+−ki

)(−a+ki)|0⟩

Now take k → −k then:∫
d3k ϕ(−k) (−a+ki)(−a+−ki

)|0⟩ = (+)

∫
d3k ϕ(k) (a+ki)a

+
−ki

)|0⟩

since ϕ(k) is a symmetric function (scalar), ϕ(k) = ϕ(−k). Thus, we arrived to the desired
state |γγ; 0+⟩ which is invariant under parity as expected for scalar states.

(b) Show that:

|γγ; 0−⟩ ∝
∫

d3k ϕ(k) ϵijlk
la+kia

+
−kj

|0⟩ . (5)

Solution: Apply the parity operator P :∫
d3k ϕ(k) ϵijlk

lPa+kiP
+Pa+−kj

P+|0⟩ =
∫

d3k ϕ(k) ϵijlk
l(−a+−ki

)(−a+kj )|0⟩

(a) First way: we take k → −k then∫
d3k ϕ(k) ϵijlk

lPa+kiP
+Pa+−kj

P+|0⟩ =
∫

d3k ϕ(k) ϵijl(−kl)(a+ki)(a
+
−kj

)|0⟩

= −
∫

d3k ϕ(k) ϵijlk
l(a+ki)(a

+
−kj

)|0⟩

(b) Second way: Use the antisymmetric property of ϵijl i.e. (flipping i ↔ j) where:

ϵijlk
l(a+−ki

)(a+kj ) = −ϵijlk
l(a+ki)(a

+
−kj

)

Thus, we arrived to the desired state: |γγ; 0−⟩ which is also invariant under parity.

(c) Prove the Lee-Yang theorem which states that one cannot construct a J = 1, γγ state.

6



Solution: We seek a rank 1 Cartesian tensor then:

|γγ; J = 1 ; l⟩ =
∫

d3k ϕlij(k) a
+
ki
a+−kj

|0⟩ ,

We must have:
ϕlij(k) = ϕ(k)tlij + χ(k)δijk

l ,

then

|γγ; J = 1 ; l⟩ =
∫

d3k [ϕ(k)tlij + χ(k)δijk
l] a+kia

+
−kj

|0⟩

k → −k =

∫
d3k [ϕ(−k)tlij + χ(−k)δij(−kl)] a+−ki

a+kj |0⟩

=

∫
d3k [−ϕ(k)tlij − χ(k)δijk

l] a+−ki
a+kj |0⟩

= −
∫

d3k [ϕ(k)tlij + χ(k)δijk
l] a+kia

+
−kj

|0⟩

= −|γγ; J = 1 ; l⟩

Therefore |γγ; J = 1 ; l⟩ = 0, which validates Lee-Yang theorem that we cannot construct a
J = 1 γγ state.
Remark: Note that here ϕ(−k) = −ϕ(k) since it is not scalar in this case, χ(−k) = χ(k)
(scalar), and a+−ki

a+kj = a+kia
+
−kj

since the creation operators commutes in the case of Bosons
(photons).

(d) Show that:

|γγγ; 0−⟩ =
∫

d3k1d
3k2d

3k3 ϕ(k1k2k3) ϵi1i2i3δ(k1k2k3)a
+
k1i1

a+k2i2a
+
k3i3

|0⟩ , (6)

is a viable state.

Solution: Apply the parity operator P :

∫
d3k1d

3k2d
3k3 ϕ(k1k2k3) ϵi1i2i3δ(k1 + k2 + k3)Pa+k1i1P

+Pa+k2i2P
+Pa+k3i3P

+|0⟩

= −
∫

d3k1d
3k2d

3k3 ϕ(k1k2k3) ϵi1i2i3δ(k1 + k2 + k3)a
+
−k1i1

a+−k2i2
a+−k3i3

|0⟩

k → −k = −
∫

d3k1d
3k2d

3k3 ϕ ((−k1)(−k2)(−k3)) ϵi1i2i3δ(−k1 − k2 − k3)a
+
k1i1

a+k2i2a
+
k3i3

)|0⟩

= −
∫

d3k1d
3k2d

3k3 ϕ(k1k2k3) ϵi1i2i3δ(k1k2k3)a
+
k1i1

a+k2i2a
+
k3i3

|0⟩

Thus, this state is a valid state.

(e) Can we construct a |γγγ; 1−⟩ state? (Hint: Pa+kiP
+ = −a+−ki

)

7



Solution: We seek to combine 3 vectors to form a vector state. Consider the angular momentum
of three photons.

• Combining Angular Momenta:
- Start by combining two vectors to form an intermediate state.
- In the case of three vectors k1, k2, and k3, we can form the combinations:

(k1 × k2)s = (k1k2) + (k2k1)

- This is symmetric in space.
• Cross Product for Antisymmetry:

- To obtain a 1− state, we need an antisymmetric combination.
- Take the cross product of the intermediate state with the third vector k3:(k1×(k2×k3))

• Constructing the State:
-Combine all three vectors in such a way that respects the antisymmetry needed for a 1−

state. ∫
d3k1 d

3k2 d
3k3 ϕ(k1k2k3) ϵi1i2i3δ(k1 + k2 + k3)a

+
k1i1

a+k2i2a
+
k3i3

|0⟩

• Symmetry Considerations:
- This state is symmetric under permutations of the three momenta k1, k2, and k3.
- The use of ϵi1i2i3 ensures the antisymmetry necessary for a pseudoscalar state.

• Parity Check:
- Under parity, the creation operator transforms as

Pa+kiP
+ = −a+−ki

. - The state under parity transforms as:

P |γγγ; 1−⟩ = (−1)3|γγγ; 1−⟩ = −|γγγ; 1−⟩

(same as part(d))
This confirms that possibility of constructing a |γγγ; 1−⟩ state using the above considerations.

8


	Escape room in the complex plane[ points] 
	Argand diagrams from lattice[ points] 
	Cartesian tensors[ points] 
	Photons in Cartesian Basis[ points] 

