Ruhr-University Bochum

Modern Techniques in Hadron Physics

MTHS24 – Exercise sheet 6

Morning: Mikhail Mikhasenko / Sergi Gonzalez-Solis Afternoon: Gloria Montana, Dhruvanshu Parmar

Saturday, 20 July 2024

Lecture material

Discussed topics:

- Lippmann-Schwinger equation, Bethe-Salpeter References: equation, and K-matrix
 A.D. N
- Lineshape analysis and Briet-Wigner formula
- Complex algebra, dispersion relations
- Analytic continuation and pole search
- Khury-Treiman equations

- A.D. Martin, T.D. Spearman, Elementary Particle Theory, inSpire
- Review on Novel approaches in hadron spectroscopy by JPAC, inspire

Exercices

6.1 Escape room in the complex plane

- (a) Characterize the complex structure of functions \sqrt{x} and $\log(-x)$ by finding the branch points, branch cuts and number of complex (Riemann) sheets in the complex plane.
- (b) Repeat (a) for a function $f(x) = \sqrt{x} \sqrt{x-1}$.
- (c) Construct a complex function with two branch points at +i and -i connected by a branch cut.
- (d) Locate zeros of the function $g(z) = \sqrt{z} + i + 1$.
- (e) Find residue of the function 1/g(z) by computing a circular integral about the complex pole.

6.2 Argand diagrams from lattice

The $\pi\pi$ scattering with unphysical pion mass ($m_{\pi} = 391 \text{ MeV}$) for S (left) and D (right) partial waves is studied using lattice calculations. Scattering amplitudes are presented on the Argand diagrams (parametric plot of energy in Real/Imaginary coordinates) as a function of energy of the system. The value are given units of $E_{\rm cm} \cdot t$ where $t \cdot m_{\pi} = 0.06906$.

Using information on the diagrams, answer the following questions:

- (a) Estimate masses of K and η particles.
- (b) Find the elastic energy region for the S and D waves.

Solution: Elastic region is defined as the range of energy values for which $\pi\pi \to \pi\pi$ process dominates. For the S-wave, the elastic region lies for the $E_{\rm cm}t$ range of [0.139,0.189] (after this point, the amplitude hits the $K\bar{K}$ threshold. Also, after this point, the curve starts going inside the unitarity circle). For the D-wave, this region exists until value of 0.229.

(c) Locate the energy value for which the S-wave peak.

Solution: The S-wave peaks at the point $E_{cm}t = 0.154$, which is at energy $E_{cm} = 0.872$ GeV.

(d) Estimate the mass and decay width for the D wave resonance.

Solution: The D-wave resonance is observed at $E_{cm}t = 0.284$, this is the point where there is a kink in the argand diagram. Note : I can locate where the resonance is. I am confused about how to proceed from there, because I can get center of mass energy from the point, and maybe equate it to the pole value. But I would expect a complex output but I cannot read it out properly from the Argand diagram.

(e) Sketch the amplitude phase versus energy of the system for both partial waves.

6.3 Cartesian tensors

Cartesian tensors are tensors in three-dimensional Euclidean space. The available tensors are:

- Rank 0: 1
- Rank 1: k^i
- Rank 2: $k^i k^j$, $delta^{ij}$, $\epsilon^{ijl} k_l$

- Rank 3: ϵ^{ijl}
- Rank 4: combinations of all the above
- (a) Show that $\epsilon^{ijl}k_jk_l$ is not a rank 1 tensor.

Solution: The Levi-Civita tensor ϵ^{ijl} is antisymmetric under the exchange of any two indices, i.e. $\epsilon^{ijl} = -\epsilon^{ilj}$. Then

$$e^{ijl}k_jk_l = -\epsilon^{ilj}k_lk_j$$

and since the product of two components of the same vector is commutative thus $k_j k_l = k_l k_j$ we have:

$$\epsilon^{ijl}k_jk_l = -\epsilon^{ilj}k_jk_l$$

This implies:

$$\epsilon^{ijl}k_ik_l = 0$$

Therefore, $\epsilon^{ijl}k_jk_l$ is identically zero and does not form a valid rank 1 tensor (does not behave as rank 1 tensor).

(b) Show that $\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$, using the following property: $(\mathbf{A} \times \mathbf{B})^i = \epsilon^{ijl} A_j B_i$ Hint:

$$\epsilon_{ijl}\epsilon_{ij'l'} = \delta_{jj'}\delta_{ll'} - \delta_{jl'}\delta_{j'l} \tag{1}$$

Solution: Starting with the vector identity:

$$(\mathbf{A} \times \mathbf{B})^i = \epsilon^{ijl} A_j B_l$$

Let $\mathbf{C} = \nabla \times \mathbf{A}$, then:

$$C^i = (\nabla \times \mathbf{A})^i = \epsilon^{ijl} \partial_j A_l$$

Now, consider the curl of \mathbf{C} , and use the property of the Levi-Civita symbol:

$$(\nabla \times \mathbf{C})^{i} = \epsilon^{imn} \partial_{m} C_{n} = \epsilon^{imn} \partial_{m} (\epsilon^{njl} \partial_{j} A_{l})$$

$$= \epsilon^{imn} \epsilon^{njl} \partial_{m} \partial_{j} A_{l}$$

$$= (\delta^{ij} \delta^{ml} - \delta^{il} \delta^{mj}) \partial_{m} \partial_{j} A_{l}$$

$$= \partial_{i} \partial_{l} A_{l} - \partial_{j} \partial_{j} A_{i}$$

$$= \nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^{2} \mathbf{A}$$

(c) Given $\int d^3k f(k) k^i = 0$ for a scalar function f(k). Show that:

$$\int d^3k \, f(k) \, k^i k^j = \frac{1}{3} \delta^{ij} \int d^3k \, f(k) \, k^2 \,. \tag{2}$$

Solution: By symmetry, the integral $\int d^3k f(k) k^i k^j$ must be proportional to δ^{ij} because the left-hand side is a rank 2 tensor and the only isotropic rank 2 tensor is proportional to δ^{ij} , then:

$$\int d^3k f(k) k^i k^j = A \delta^{ij}$$

To find A , take the trace:
$$\int d^3k f(k) k^i k^i = A \delta^{ii}$$

Since $\delta^{ii} = 3$, we have:
$$\int d^3k f(k) k^2 = 3A$$

So,
$$A = \frac{1}{3} \int d^3k f(k) k^2$$

Thus,
$$\int d^3k f(k) k^i k^j = \frac{1}{3} \delta^{ij} \int d^3k f(k) k^2$$

(d) Show that

$$\int d^3k \, f(k,\hat{p}) \, k^i k^j = \frac{1}{2} \int d^3k \, f \left[k^2 - (k \cdot \hat{p})^2 \right] \delta^{ij} + \frac{1}{2} \int d^3k \, f \left[3(k \cdot \hat{p})^2 - k^2 \right] \hat{p}^i \hat{p}^j \,. \tag{3}$$

Solution: The given integral can be split into parts proportional to δ^{ij} and $\hat{p}^i \hat{p}^j$:

$$\int d^3k f(k,\hat{p}) k^i k^j = A \delta^{ij} + B \hat{p}^i \hat{p}^j$$

To find A and B, we take the trace and the contraction with $\hat{p}^i \hat{p}^j$: (a) Trace:

$$\delta^{ij} \int d^3k \, f(k,\hat{p}) \, k^i k^j = A \delta^{ii} + B(\hat{p}^i \hat{p}^i)$$
$$\rightarrow \int d^3k \, f(k,\hat{p}) \, k^2 = 3A + B$$

(b) Contraction with $\hat{p}^i \hat{p}^j$:

$$\begin{split} \hat{p}^i \hat{p}^j \int d^3k \, f(k, \hat{p}) \, k^i k^j &= A(\hat{p} \cdot \hat{p}) + B(\hat{p}^i \hat{p}^j \hat{p}^i \hat{p}^j) \\ \\ &\rightarrow \int d^3k \, f(k, \hat{p}) \, (k \cdot \hat{p})^2 = A + B \end{split}$$

(c) Solving for A and B:

$$3A + B = \int d^3k f(k, \hat{p}) k^2$$
$$A + B = \int d^3k f(k, \hat{p}) (k \cdot \hat{p})^2$$

(d) Subtract the second equation from the first:

$$2A = \int d^{3}k f(k, \hat{p}) \left(k^{2} - (k \cdot \hat{p})^{2}\right)$$

Thus $A = \frac{1}{2} \int d^{3}k f(k, \hat{p}) \left(k^{2} - (k \cdot \hat{p})^{2}\right)$

(e) Using A in the second equation:

$$\begin{split} B &= \int d^3k \, f(k, \hat{p}) \, (k \cdot \hat{p})^2 - A \\ B &= \int d^3k \, f(k, \hat{p}) \, (k \cdot \hat{p})^2 - \frac{1}{2} \int d^3k \, f(k, \hat{p}) \, (k^2 - (k \cdot \hat{p})^2) \\ \text{So} \quad B &= \frac{1}{2} \int d^3k \, f(k, \hat{p}) \, (3(k \cdot \hat{p})^2 - k^2) \end{split}$$

Therefore,

$$\int d^3k f(k,\hat{p}) k^i k^j = \frac{1}{2} \int d^3k f\left[k^2 - (k\cdot\hat{p})^2\right] \delta^{ij} + \frac{1}{2} \int d^3k f\left[3(k\cdot\hat{p})^2 - k^2\right] \hat{p}^i \hat{p}^j$$

6.4 Photons in Cartesian Basis

Consider photons (or gluons) in Cartesian basis so $a^+_{k_i} = \sum_\lambda a^+_{k_\lambda} \epsilon^i(k_\lambda)$.

(a) Show that the "scalar photon ball" is just a scalar state $\gamma\gamma$ that can be written as:

$$|\gamma\gamma;0^{+}\rangle \propto \int d^{3}k \,\phi(k) \,a^{+}_{k_{i}}a^{+}_{-k_{i}}|0\rangle \,, \tag{4}$$

where $\phi(k)$ is the momentum wave function.

Solution: Apply the parity operator *P*:

$$\int d^3k \,\phi(k) \, Pa^+_{k_i} P^+ Pa^+_{k_i} P^+ |0\rangle = \int d^3k \,\phi(k) \, (-a^+_{-k_i}) (-a^+_{k_i}) |0\rangle$$

Now take $k \rightarrow -k$ then:

$$\int d^3k \,\phi(-k) \,(-a_{k_i}^+)(-a_{-k_i}^+)|0\rangle = (+) \int d^3k \,\phi(k) \,(a_{k_i}^+)a_{-k_i}^+)|0\rangle$$

since $\phi(k)$ is a symmetric function (scalar), $\phi(k) = \phi(-k)$. Thus, we arrived to the desired state $|\gamma\gamma; 0^+\rangle$ which is invariant under parity as expected for scalar states.

(b) Show that:

$$|\gamma\gamma;0^{-}\rangle \propto \int d^{3}k \,\phi(k) \,\epsilon_{ijl}k^{l}a^{+}_{k_{i}}a^{+}_{-k_{j}}|0\rangle \,.$$
⁽⁵⁾

Solution: Apply the parity operator *P*:

$$\int d^3k \,\phi(k) \,\epsilon_{ijl} k^l P a_{k_i}^+ P^+ P a_{-k_j}^+ P^+ |0\rangle = \int d^3k \,\phi(k) \,\epsilon_{ijl} k^l (-a_{-k_i}^+) (-a_{k_j}^+) |0\rangle$$

(a) First way: we take $k \rightarrow -k$ then

$$\int d^{3}k \,\phi(k) \,\epsilon_{ijl}k^{l}Pa^{+}_{k_{i}}P^{+}Pa^{+}_{-k_{j}}P^{+}|0\rangle = \int d^{3}k \,\phi(k) \,\epsilon_{ijl}(-k^{l})(a^{+}_{k_{i}})(a^{+}_{-k_{j}})|0\rangle$$
$$= -\int d^{3}k \,\phi(k) \,\epsilon_{ijl}k^{l}(a^{+}_{k_{i}})(a^{+}_{-k_{j}})|0\rangle$$

(b) Second way: Use the antisymmetric property of ϵ_{ijl} i.e. (flipping $i \leftrightarrow j$) where:

$$\epsilon_{ijl}k^{l}(a_{-k_{i}}^{+})(a_{k_{j}}^{+}) = -\epsilon_{ijl}k^{l}(a_{k_{i}}^{+})(a_{-k_{j}}^{+})$$

Thus, we arrived to the desired state: $|\gamma\gamma;0^-\rangle$ which is also invariant under parity.

(c) Prove the Lee-Yang theorem which states that one cannot construct a J=1, $\gamma\gamma$ state.

Solution: We seek a rank 1 Cartesian tensor then:

$$|\gamma\gamma; J=1; l\rangle = \int d^3k \,\phi_{lij}(k) \,a^+_{k_i} a^+_{-k_j}|0\rangle \,,$$

We must have:

$$\phi_{lij}(k) = \phi(k)t_{lij} + \chi(k)\delta_{ij}k^l \,,$$

then

$$\begin{aligned} |\gamma\gamma; J &= 1; l \rangle = \int d^{3}k \left[\phi(k) t_{lij} + \chi(k) \delta_{ij} k^{l} \right] a^{+}_{ki} a^{+}_{-kj} |0\rangle \\ k \to -k &= \int d^{3}k \left[\phi(-k) t_{lij} + \chi(-k) \delta_{ij} (-k^{l}) \right] a^{+}_{-ki} a^{+}_{kj} |0\rangle \\ &= \int d^{3}k \left[-\phi(k) t_{lij} - \chi(k) \delta_{ij} k^{l} \right] a^{+}_{-ki} a^{+}_{kj} |0\rangle \\ &= -\int d^{3}k \left[\phi(k) t_{lij} + \chi(k) \delta_{ij} k^{l} \right] a^{+}_{ki} a^{+}_{-kj} |0\rangle \\ &= -|\gamma\gamma; J = 1; l \rangle \end{aligned}$$

Therefore $|\gamma\gamma; J = 1; l\rangle = 0$, which validates Lee-Yang theorem that we cannot construct a $J = 1 \gamma\gamma$ state. **Remark:** Note that here $\phi(-k) = -\phi(k)$ since it is not scalar in this case, $\chi(-k) = \chi(k)$ (scalar), and $a^+_{-k_i}a^+_{k_j} = a^+_{k_i}a^+_{-k_j}$ since the creation operators commutes in the case of Bosons (photons).

(d) Show that:

$$\gamma\gamma\gamma; 0^{-}\rangle = \int d^{3}k_{1}d^{3}k_{2}d^{3}k_{3} \phi(k_{1}k_{2}k_{3}) \epsilon_{i_{1}i_{2}i_{3}}\delta(k_{1}k_{2}k_{3})a^{+}_{k_{1}i_{1}}a^{+}_{k_{2}i_{2}}a^{+}_{k_{3}i_{3}}|0\rangle,$$
(6)

is a viable state.

Solution: Apply the parity operator P:

$$\int d^{3}k_{1}d^{3}k_{2}d^{3}k_{3} \phi(k_{1}k_{2}k_{3}) \epsilon_{i_{1}i_{2}i_{3}}\delta(k_{1}+k_{2}+k_{3})Pa^{+}_{k_{1}i_{1}}P^{+}Pa^{+}_{k_{2}i_{2}}P^{+}Pa^{+}_{k_{3}i_{3}}P^{+}|0\rangle$$

$$= -\int d^{3}k_{1}d^{3}k_{2}d^{3}k_{3} \phi(k_{1}k_{2}k_{3}) \epsilon_{i_{1}i_{2}i_{3}}\delta(k_{1}+k_{2}+k_{3})a^{+}_{-k_{1}i_{1}}a^{+}_{-k_{2}i_{2}}a^{+}_{-k_{3}i_{3}}|0\rangle$$

$$k \rightarrow -k = -\int d^{3}k_{1}d^{3}k_{2}d^{3}k_{3} \phi((-k_{1})(-k_{2})(-k_{3})) \epsilon_{i_{1}i_{2}i_{3}}\delta(-k_{1}-k_{2}-k_{3})a^{+}_{k_{1}i_{1}}a^{+}_{k_{2}i_{2}}a^{+}_{k_{3}i_{3}})|0\rangle$$

$$= -\int d^{3}k_{1}d^{3}k_{2}d^{3}k_{3} \phi(k_{1}k_{2}k_{3}) \epsilon_{i_{1}i_{2}i_{3}}\delta(k_{1}k_{2}k_{3})a^{+}_{k_{1}i_{1}}a^{+}_{k_{2}i_{2}}a^{+}_{k_{3}i_{3}}|0\rangle$$

Thus, this state is a valid state.

(e) Can we construct a $|\gamma\gamma\gamma;1^angle$ state? (Hint: $Pa^+_{k_i}P^+=-a^+_{-k_i}$)

Solution: We seek to combine 3 vectors to form a vector state. Consider the angular momentum of three photons.

- Combining Angular Momenta:
 - Start by combining two vectors to form an intermediate state.
 - In the case of three vectors $\mathbf{k}_1,\,\mathbf{k}_2,$ and $\mathbf{k}_3,$ we can form the combinations:

$$(\mathbf{k}_1 \times \mathbf{k}_2)_s = (\mathbf{k}_1 \mathbf{k}_2) + (\mathbf{k}_2 \mathbf{k}_1)$$

- This is symmetric in space.

- Cross Product for Antisymmetry:
 - To obtain a 1^- state, we need an antisymmetric combination.
 - Take the cross product of the intermediate state with the third vector \mathbf{k}_3 : $(\mathbf{k}_1 \times (\mathbf{k}_2 \times \mathbf{k}_3))$
- Constructing the State:

-Combine all three vectors in such a way that respects the antisymmetry needed for a $1^-\,$ state.

$$d^{3}k_{1} d^{3}k_{2} d^{3}k_{3} \phi(k_{1}k_{2}k_{3}) \epsilon_{i_{1}i_{2}i_{3}} \delta(k_{1}+k_{2}+k_{3}) a^{+}_{k_{1}i_{1}} a^{+}_{k_{2}i_{2}} a^{+}_{k_{3}i_{3}} |0\rangle$$

- Symmetry Considerations:
 - This state is symmetric under permutations of the three momenta \mathbf{k}_1 , \mathbf{k}_2 , and \mathbf{k}_3 .
 - The use of $\epsilon_{i_1i_2i_3}$ ensures the antisymmetry necessary for a pseudoscalar state.
- Parity Check:
 - Under parity, the creation operator transforms as

$$Pa_{k_i}^+ P^+ = -a_{-k_i}^+$$

. - The state under parity transforms as:

$$P|\gamma\gamma\gamma;1^{-}\rangle = (-1)^{3}|\gamma\gamma\gamma;1^{-}\rangle = -|\gamma\gamma\gamma;1^{-}\rangle$$

(same as part(d))

This confirms that possibility of constructing a $|\gamma\gamma\gamma;1^-\rangle$ state using the above considerations.