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Exercices

Unitarity and Reggeons

Van Hove proposed a physically intuitive picture of a Reggeon by relating it to Feynman diagrams in the
cross-channels. We will explore this picture of Reggeization with a simple model.

()

Elementary t-channel exchanges
Consider the amplitude corresponding to a particle with spin-J and mass m; exchanged in the ¢-
channel as:

J M1 ny Plflu-HJ,Vln-VJ (k) V1 vy
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J
where g is a coupling constant with dimension 2—2.J (i.e., A”(s, t) is dimensionless) and the projector
of spin-J is defined from the polarization tensor of rank-J > 1 as

P! (= LD Z B (D) €0 (N )
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Using the exchange momentum k& = ¢q; + g3 = q1 — g3, calculate the amplitudes corresponding to
J =0, 1,2 exchanges in terms of t = k2, the modulus of 3-momentum and cosine of scattering angle
in the t-channel frame, ¢; and cos 0; respectively. Use the explicit forms of the projectors:
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k,k,
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and conjecture a generalization of the amplitude for arbitrary integer J.
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Hint: Show that in the t-channel frame, the exchange particle is at rest and therefore g, reduces to
a d;; with respect to only spacial momenta.

Solution:
We start by considering the elastic scattering of two identical, spinless particles with 4-
momentum ¢; and with mass ¢ = m?. We define the usual Mandelstam variables

s=(q1+ (J2)2 = (g3 + Q4)2
t=(q1—a3)° = (g1 — )*
u=(q1 —q1)* = (g2 — q3)*

We refer to the s-channel as the physical region describing the process
1(q1) +2(q2) = 3(g3) +4(qa)

while in the ¢t-channel we consider
L(q1) +3(g3) = 2(q2) +4(qa) -

The J =0 is trivial

. 1 . Po(cosb;)

AO t = = _ . 6
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For J =1 use ¢1 = (Vt/2,q 2) and g3 = (v//2,—q; 2). In the t-channel CM frame we have
k=(q1—q) = (@1 +g3) = (Vt,0) and

\/22

k,k
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thus qf Gy = Q- G = qt2 cos 6;. Similarly qf Guwd] = qg GGy = qf and we have

) 0 , Py (cosby)
(s, 1) L0 TG (8)
and finally also
1(3cosh; — 1) Py(cos 6y)
A%(s,t) =igoqt 20— gy gt PR 9
(s,1) = ig2 qy m2 —t 192 Gy mZ — ¢ (9)

The generalization to arbitrary J is

] Pjy(cosb
A (s, t) = igs i’ 7‘;(2 2

- (10)

(b) Unitarity vs Elementary exchanges
Express the amplitude entirely in terms of invariants s and ¢. Use the optical theorem to relate the
elastic amplitude to a total hadronic cross section:
1

oot = 57 IA7(s,t =0) . (11)

Unitarity (via the Froissart-Martin bound) prohibits oyt from growing faster than log? s as s — oo .
What is then the maximal spin a single elementary exchange can have while satisfying this bound?
Why is this a problem?




Solution: We have

97 oJ
P 0 . 12
Trot = 5 \[ mZ ;" Py(cosb) L (12)
We have ¢? cosf; = (s — u)/4 so that as s — oo, we have:
Otot ™~ SJ_l . (13)

To satisfy the Froissart bound, the maximally allowed spin then is J = 1.

(c) Van Hove Reggeon
Consider an amplitude of the form

Z qt cos 0;)) . (14)
J=

Here a(t) = a(0) + &'t is a real, linear Regge trajectory, g is a dimensionless coupling constant and
r ~ 1 fm is a range parameter. Compare Eq. 14 with Eq. 1, write the mass of the Jth pole, m?%, as a
function of the Regge parameters a(0) and . Interpret the pole structure in terms of the spectrum
of particles in the model.

If the sum is truncated to a finite Jax, and we take the s — oo limit, what is the high energy behavior
of the amplitude?

Solution: We can write

J—a(t)=J—a0)—d't=ad ((J—a(0))/d —1t) (15)
and thus we have m? = (J — «(0)) /<.
We can use
J (J +1)!
0,)’ = : Pj/(cos@ 16
ot J+;ven (7= T+ o e (10)
J
= Z Mg PJ/(COS 975) (17)
J+J’ even
to write
J 2J
gripgy\ oy Py(cosb:)
A(s,t) = 18
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J
Py (cos@
=N grd! 2 (2 I (19)
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Comparing with the form of our elementary exchanges, this amplitude is an infinite sum of
particles with spin-J and mass m?, but also all same parity daughters at the same mass.

If the sum is truncated at Jmax the s — oo limit is dominated by the largest spin exchange and
we have Ayunc(s,t) oc s7mex.

(d) Analytic continuation in J
Show that if the summation is kept infinite, the amplitude can be re-summed to something that is
entirely analytic in s, ¢, u, and J.



Hint: Use the Mellin transform

L

to express the amplitude in terms of the Gaussian hypergeometric function and the Euler Beta function

(1 _ :E)cfbfl
1—2x=z ’

1 b1
B(b,c—b)gFl(l,b,c;z):/ dx (21)
0

Solution: Go back to the original form in terms of monomials, we can write

1
A(s,t) = Z/ dz gr?/ (¢? cos )’ x/—2®O-1 (22)
J=0"0
Collecting all things with powers of J, we notice a geometric series which can be summed
analytically
pa)-1

1
A(s,t) :g/o dx (23)

1—1r2¢? cosOpz

Comparing with the definition of the hypergeometric function, we can identify z = 2 ¢? cos 6,

and b = —a(t). Since there is no (1 — x) term we require c = b+ 1 =1— «(t). Thus we have
A(s, 1) = m 2Fy (1, —a(t), 1 — a(t), (g 7)? cos b)) (24)
=TD(—a(t)) 2 F1 (1, —a(t), 1 — a(t), (g r)? cos 0;) . (25)

(e) Unitarity vs Reggeized exchanges
Revisit b) with the resummed amplitude. Take the s — oo limit and set a limit on the maximal
intercept «(0) which is allowed by unitarity.

Hint: Assume that «(0) > —1 and use the asymptotic behavior of the hypergeometric function given
by
I'(c)T(1—b)

QFl(l,b,C; Z) — m

(—2)7°. (26)

Solution: From the hypergeometric form we can take s — oo which takes ¢? cosf; = (s —
u)/4 — oo and we can write

u— s\
A(s,t) = goT'(—a(t)) T(1 + af(t)) < =2 ) ) (27)
So, we have
SA(s,0) o S(—5)M  sin wa(0) s (28)

50 0ot ~ 54O~ and unitarity requires a(0) < 1.

(f) The Reggeon “propagator"
Modify Eq. 1 to have a definite signature by defining

AE(s, 1) = % [A(s, ) + A(u, )] . (29)
Repeat d) and e) with this signatured amplitude. Compare with the canonical form of the Reggeon
exchange:
1 . s\ ®
AZ(s,t) = B(t) 5 il+e—m<t>} I'(—a(t)) <S> . (30)
0



Identify the Regge residue 3(t) and characteristic scale sy in terms of the parameters go and 7.

Solution: As we see above, switching s <> u introduces a minus sign and we have

1 4 s —u\ "
Ao 0) = D1+ a) g1+ O n-a) (S) @)

and we can read off B(t) = go I'(1 + a(t)). Using s ~ —u we also see sq = 272

8.2 Veneziano Amplitude

The quintessential dual amplitude was first proposed by Veneziano for w — 3w and later applied to elastic
7 scattering by Shapiro and Lovelace. Consider the 7™ 7~ scattering amplitude of the form

A(s,t,u) =V (s, t) + V(s,u) — V(t,u) . (32)

with each
(1 —a(s) (1 — at))
I'(l—a(s)—at)

where a(s) = a(0) + o’s is a real, linear Regge trajectory with o/ > 0.

Vs, t) = (33)

(a) Duality
Show that the function V' (s,t) is symmetric in s <> t and dual, i.e., it can be written entirely as a
sum of either s-channel poles OR t-channel poles but never both simultaneously. Compare with the
Reggeized amplitude in the previous problem, was that amplitude dual?

Hint: Relate V (s,t) to the Euler Beta function

() L(y)

B(xvy) - I‘(x—i—y)

and use the identities B(x,y) = B(y,x) and

I'J—-p+1+ux) 1

B(p — —y) = .
(p=2.9-y) Jzzlr(J)F(—p+1+x)J—1+q—y

(35)

Solution: We can write:
Vis,t) =(1—a(s) —a(t) B(1 —a(s),l —a(t)) . (36)
Then using the expansion of the Beta function on its first argument, we have

s5,1) = (1 —a(s) —« y~ T — 1+ a(t)) !
Vi) = (1-a() ~ o) ¥ ey 7o (37)

which only has poles in a(s). Because of the s <+ ¢t symmetry, we can write the exact same
expression with only poles in «(t).

(b) Isospin basis
Define the s-channel isospin basis through

A (s, t,u) 1 31 1 A(s,t,u)
AW (s tu) | = 3 01 —1|[A(su)] . (38)
AP (s,t,u) 01 1 Alu,t, s)

Write down the definite-isospin amplitudes in terms of V's. Comment on the symmetry properties of
each isospin amplitude with respect to t < w.



Solution: We have:

AO) (s, ¢, u) = ; BV (5,8) + 3V (s, 1) — V(£ 1) (39)
AV (st u) = V (s, t) — V(s,u) (40)
AP (s, t,u) = V(t,u) . (41)

I = 0,2 are symmetric in t <> u while I = 1 is anti-symmetric as required by Bose symmetry.

(c) Chew-Frautshi plot

Locate where each A (s, t,u) will have poles in the s-channel physical region. What is their residue?
Draw a schematic Chew-Frautschi plot of the resonance spectrum in each isospin channel.

Solution: A single V(s,t) will have poles at all a(s) = J > 1 and all possible daughters. The
residues are
I'(J—1+a(t)) -1 I'(J + a(t)) (a(t)) s

B ) B ) R (3 R & R

For a linear trajectory this is a order J polynomial in ¢ and therefore in z;.
The symmetry factors in I = 0,1 will remove all odd (even) J daughters. The I = 2 amplitude
has no s dependence and therefore no isospin-2 poles at all.

(d) Regge limit

Now consider the limit ¢ — oo and u — —oo with s < 0 is fixed. What is the asymptotic behavior of
V(s,t) and V(s,u)? Assume that V' (¢,u) vanishes faster than any power of s in this limit. What is
the resulting behavior of the isospin amplitudes A (s, ¢, u) in this limit?

Hint: Use the Sterling approximation of the I" function., i.e. as |z| — oo

I(z) = ﬁ(i)x . (43)

Solution: Starting with

V(s,t) = T(1 = a(s)) (—a(t)*® ~ T(1 - a(s)) (—a’t)*) . (44)
Similarly
V(s,u) = T(1 = a(s)) (—a(u)*® ~ T(1 — a(s)) (—a’t)**) . (45)
Thus the combination
Vi(s,t) £ V(s,u) = D(1 — afs)) x [(—o/ 1)) 1 (—o/ u)“(s)} (46)
=T(1—a(s)) x [1 + e*im(s)} (o/ t)a(s) (47)

(e) Ancestors and Strings

Consider the model now with a complex trajectory a(s) = ag + a’s + i with T' > 0 to move
the poles off the real axis. Reexamine the the Chew-Frautshi plot for the I = 1 amplitude using
this trajectory, why is the resulting spectrum problematic? Try a real but non-linear trajectory, say
a(s) = ap + o' s+ " s2, what is the spectrum like now?

Compare the requirements of the trajectory for V'(s,t) to make sense with the energy levels of a
rotating relativistic string with a string tension T":

Ei=_——"—J. (48)



What is a possible microscopic picture of hadrons if the Veneziano amplitude is believed?

Solution: If we allow «a(t) to be complex, then at a pole a(s) — J + il and the residue we

calculated
D(J+il + a(t))

I'(af(t)) ’

is no longer a fixed order polynomial in ¢. It will thus give contributions to ALL spins at each
pole, i.e. introduce an infinite number of ancestors. Similarly if a(s) is non-linear, we will have
finitely many ancestors but still unphysical poles nonetheless.
This means the Veneziano amplitude only gives a physical picture for real and linear trajectories.
This means we require J o< s ~ m? which mimics the spectrum of states in a relativistic rotating
string. This gives rise to the stringy picture of a gq pair connected by a gluon flux tube and
later the entire field of string theories.

(49)

8.3 Sommerfeld-Watson Transform
(a) Geometric series

Prove the well known resummation of the geometric series:

1
1+x+x2+x3+...:17 for |z| < 1 (50)
—x

can be analytically continued to || > 1 with the Sommerfeld-Watson Transform.

Assume that |z| > 1 and show that the summation can be written as an integral over the complex

plane

2 sin 7/

dl (—xz)*
/ . T (51)
Draw the contour around which the above integration should be taken (careful with orientations and

signs). Deform the contour such that you can relate Eq. 51 to the series

1 1 1 1
4 4 4= T (52)
X

x  x?  ad 1—

and arrive at Eq. 50.



Solution: We want to show that we can analytically continue the geometric series to |z| > 1
using the Sommerfeld-Watson Transform.
First, we will prove that the sum can be written as an integral over the complex plane:

L5 L (53)

c 24 sinm/

where the function 1/sin ¢ has poles at integer values of ¢ = ..., —2,—1,0,1,2,... We use
the Cauchy Residue Theorem:

ff(z)dz = +2mi Z Res,—, f(2) , (54)
k

with sign + for a counterclockwise contour and — for a clockwise contour around the pole at
k. The residue of f(¢) = (—x)"/sinml at £ = k is given by

(—a)f = lim (¢ — k)( z)’ = lim ()" _ x—k

ReSg k
sinml =k sinwl  ¢—k wcosml T

(55)
Therefore, if we encircle all the poles at ¢ = k for & > 0 with counterclockwise contours Cj,

which we can combine to a single counterclockwise contour C encircling all the poles at 0 and
positive integers, we obtain the geometric series:

z)t de (—z)t )
Z/ 2181117T€ /C%sinﬁﬁ_kzzox =ltazt+ta™+-- (56)

Next, we deform the contour to a vertical line from o + ico to o — ico, with —1 < o < 0, and
further deform it to enclose all negative integers in a clockwise contour C’, that we can split in
individual clockwise contours Cj:

1 1 1
S 57
/C’ 21 sin 7T€ Z/ 22 sin 7T€ r z2 a3 (57)

11
= <1+ + =+ >
X X ZL'

and given the assumption |z| > 0, we have |1/z| < 1, and we can sum the geometric series:

1 1 1 1 1 1

(b) Van Hove Reggeon
Revisit the Regge behavior of Eq. 14 using the S-W transform. How does the inclusion of poles at
a(s) = ¢ change the contour of integration and the leading contribution to the asymptotic behavior?

Solution: If we include a Regge pole [¢ —a(t)] ™!, in the process of deforming the contour from
C to C’ we have to pick the residue of the pole at £ = «(t), with Re(t) < 0. This means
we have an extra clockwise contour C,,, from which we obtain an extra contribution oc 2.
Since x ~ g7 z; ~ s this yields the s*(*) behavior.

8.4 Finite Energy Sum Rules

Consider z a complex variable and « a real fixed parameter. What is the analytic structure of the function
z%?7 What is the discontinuity across the cut?

Write a Cauchy contour C' surrounding the cut and closing it with a circle of radius A in the complex z



plane, and check that

j(I{ 2%z =0
C

You can start with the simple case & = 1/2, i.e. 1/z, then generalize to any real a.

Solution: The function z¢ has a branch cut for z € [—00, 0]. The Cauchy contour enclose the
cut and the discontinuity across that cut is

(z+ie)* — (z —ie)® = (]z]™)* — (|z]e”™) for real negativez (60)
_ |Z’a (eiwa o e—irra) (61)
= 2i|z|*sin T (62)

The Cauchy contour is then, with C'y being the circle of radius A in the positive sense,

0 —A
%zo‘dz = / (z +ie)*dz + / (z —ie)*dz + ?{ z%dz (63)
—A 0 Ca

0
=2i sinwa/ ]z]adz—i—j{ z2%dz (64)
A Ca

The first integral is easily done

0 Can!

21\
2i sinﬂ'a/ |z|%dz = !
—A a+1

sin av. (65)

For the second integral, we need the change of variable z = A exp(if), with § € [—m, 7]. We
obtain

™ TAa+1
f 2%z = iAa+1/ 619(a+1)d0 — iA (eifr(oz+1) N efifr(a+1)) (66)
Cha -7 a+1
2'Aa+1
== 1 sin To (67)
(6%

We used exp(im) = —1.
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