### Ruhr-University Bochum



### MTHS24 - Exercise sheet 9

Morning: Laura Tolos / Andrew Jackura Afternoon: XXX, YYY

Modern Techniques in Hadron Physics

Wednesday, 24 July 2024

## Lecture material

#### References:

- R. Machleidt, Advances in Nuclear Physics 19, 189 (1989)
- R. Machleidt, D. R. Entem, Phys. Rept. **503**, 1 (2011)
- A Pich Rep. Prog. Phys. 58, 563 (1995)
- V. Koch, Int. J. Mod. Phys. E 6, 203 (1997)
- S. Petschauer, J. Haidenbauer, N. Kaiser, U. G. Meißner and W. Weise, Front. in Phys.
  8, 12 (2020)
- B. D. Day, Reviews of Modern Physics 39, 719 (1967); 50, 495 (1978)
- R.D. Mattuck, A guide to Feynman Diagrams in the Many-Body problem, Dover, New York, 1992. Editor McGraw-Hill, Inc.

# Exercices

### 9.1 Effecitve Theory Questions

- (a) Explain the Yukawa's idea (for NN interaction)
- (b) Explain what an effective theory is and indicate the four pillars where the power of an effective theory lies in.
- (c) Explain the many-body problem (for NN interaction)

### 9.2 Gradient Coupling

Consider the pseudo-vector (or gradient coupling) to the nucleon described by the Lagrangian

$$\mathcal{L} = -\frac{f_{\pi NN}}{m_{\pi}} \bar{\psi} \gamma^{\mu} \gamma_5 \vec{\tau} \psi \cdot \partial_{\mu} \vec{\phi}^{(\pi)}, \tag{1}$$

### and compute the contribution of the following diagram to the one-pion exchange potential (OPEP)

Discussed topics:

- Hyperon-nucleon and hyperon-hyperon interactions
- Meson-exchange models
- Chiral effective field theory
- Hyperons in matter
- Brueckner-Goldstone Theory: Brueckner-Hartree-Fock approach



Some hints:

- You should compute  $\bar{u}(p'_1, s_1)\Gamma_{\pi NN}u(p_1, s_1)$ , with  $\Gamma_{\pi NN} = (i)^2 \frac{f_{\pi NN}}{m_{\pi}} \gamma^{\mu} \gamma_5 \vec{\tau} q_{\mu}$  for the incoming pion. Note that *i* is the imaginary unit,  $(\gamma^{\mu}, \gamma_5)$  are the gamma matrices,  $\vec{\tau}$  is the isospin vector, *q* is the four-momentum carried by the pion  $(q_{\mu} = p'_1 - p_1)$ ,  $f_{\pi NN}$  is the  $\pi NN$  coupling and  $m_{\pi}$  is the pion mass.
- Consider the static limit  $(q_0 \rightarrow 0)$
- The Dirac spinors u(p,s) in the non-relativistic approach are given by  $u(p,s) = \begin{pmatrix} \chi_s \\ 0 \end{pmatrix}$ , with  $\chi_s$  the two-component Pauli spinor.
- The gamma matrices are defined as

$$\gamma^{0} = \begin{pmatrix} \mathbb{1} & 0\\ 0 & -\mathbb{1} \end{pmatrix}, \quad \gamma^{k} = \begin{pmatrix} 0 & \sigma^{k}\\ -\sigma^{k} & 0 \end{pmatrix}, \quad \gamma^{5} = \gamma_{5} = \begin{pmatrix} 0 & \mathbb{1}\\ \mathbb{1} & 0 \end{pmatrix}$$

with  $\sigma^k$  the three Pauli matrices (k running from 1 to 3). Also  $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}$  and  $\{\gamma_5, \gamma^{\mu}\} = 0$ , with  $\mu$  and  $\nu$  running from 0 to 3. The metric tensor is  $g_{00} = +1$ ,  $g_{kk} = -1$ ,  $g_{\mu\neq\nu} = 0$ .

#### 9.3 Nucleon-nucleon potential with scalar meson exchange

Calculate the nucleon-nucleon potential due to scalar meson exchange. Things to be considered:

- you have to reproduce the expression on the slides;
- the scalar propagator is given by

$$\frac{i}{q^2 - m_s^2}$$

where  $m_s$  is the scalar mass and q the four-momentum;

• work in the center-of-mass frame. If  $\vec{p_1}$  y  $\vec{p_2}$  are the momenta of initial particles 1 y 2, respectively, and  $\vec{p'_1}$  y  $\vec{p'_2}$  are the momenta of the final particles 1 y 2, respectively, then we can define

$$\begin{array}{rcl} \vec{p_1} & = & -\vec{p_2} = \vec{p}, \\ \vec{p'}_1 & = & -\vec{p'}_2 = \vec{p'}. \end{array}$$

With these definitions, we define

$$\vec{k} = 1/2(\vec{p} + \vec{p'}), \vec{q} = \vec{p'} - \vec{p};$$

- work in the non-relativistic approximation:  $E + M \sim 2M$ ;
- the angular momentum  $\vec{L}$  is defined as  $\vec{L} = i \ (\vec{k} \times \vec{q})$ .